Telegram Group & Telegram Channel
Forwarded from Machinelearning
✔️ 3 день недели Опенсорса от DeepSeek

⭐️ DeepGEMM — это не просто очередная библиотека для матричных умножений, а настоящий «мастер-класс» по оптимизации FP8 GEMM для новейших GPU.

Проект написан на CUDA и рассчитан исключительно на использование тензорных ядер архитектуры NVIDIA Hopper, что уже само по себе делает его очень современным 🖥

В основе DeepGEMM лежит идея максимально эффективного выполнения операций умножения матриц с использованием 8-битной точности.

Для решения проблемы накопления в FP8 (которое может давать неточные результаты) разработчики внедрили двухуровневое накопление, которое использует возможности CUDA-ядра для повышения точности без потери производительности.

Что действительно радует – это минимализм кода.

Ядро библиотеки представлено всего в одном ключевом модуле, состоящем примерно из 300 строк, что позволяет легко разобраться в его работе и даже внести собственные улучшения.

При этом все ядра компилируются «на лету» с помощью легковесного JIT-компилятора, так что нет долгого этапа сборки при установке.

DeepGEMM поддерживает разные режимы работы: обычные GEMM для плотных моделей, а также группированные операции для моделей типа Mix-of-Experts, где требуется обрабатывать данные в нескольких форматах – как в «континуальном», так и в «masked» виде. Это особенно актуально для современных решений в области глубокого обучения.

Оптимизации, заложенные в DeepGEMM, включают использование новых функций Hopper, таких как Tensor Memory Accelerator (TMA) для асинхронной передачи данных, а также тонкую настройку блоковых размеров и оптимизацию инструкций FFMA для лучшего перекрытия вычислений и загрузки данных. Результаты говорят сами за себя: производительность этой библиотеки на ряде тестовых примеров сравнима или даже превосходит решения, построенные на базе CUTLASS.

DeepGEMM – это лаконичный и эффективный инструмент, который может послужить отличной базой для исследований и практических разработок в области ускорения вычислений для глубокого обучения.

Github


#ai #deepseek #opensource #DeepEP #OpenSourceWeek:
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1597
Create:
Last Update:

✔️ 3 день недели Опенсорса от DeepSeek

⭐️ DeepGEMM — это не просто очередная библиотека для матричных умножений, а настоящий «мастер-класс» по оптимизации FP8 GEMM для новейших GPU.

Проект написан на CUDA и рассчитан исключительно на использование тензорных ядер архитектуры NVIDIA Hopper, что уже само по себе делает его очень современным 🖥

В основе DeepGEMM лежит идея максимально эффективного выполнения операций умножения матриц с использованием 8-битной точности.

Для решения проблемы накопления в FP8 (которое может давать неточные результаты) разработчики внедрили двухуровневое накопление, которое использует возможности CUDA-ядра для повышения точности без потери производительности.

Что действительно радует – это минимализм кода.

Ядро библиотеки представлено всего в одном ключевом модуле, состоящем примерно из 300 строк, что позволяет легко разобраться в его работе и даже внести собственные улучшения.

При этом все ядра компилируются «на лету» с помощью легковесного JIT-компилятора, так что нет долгого этапа сборки при установке.

DeepGEMM поддерживает разные режимы работы: обычные GEMM для плотных моделей, а также группированные операции для моделей типа Mix-of-Experts, где требуется обрабатывать данные в нескольких форматах – как в «континуальном», так и в «masked» виде. Это особенно актуально для современных решений в области глубокого обучения.

Оптимизации, заложенные в DeepGEMM, включают использование новых функций Hopper, таких как Tensor Memory Accelerator (TMA) для асинхронной передачи данных, а также тонкую настройку блоковых размеров и оптимизацию инструкций FFMA для лучшего перекрытия вычислений и загрузки данных. Результаты говорят сами за себя: производительность этой библиотеки на ряде тестовых примеров сравнима или даже превосходит решения, построенные на базе CUTLASS.

DeepGEMM – это лаконичный и эффективный инструмент, который может послужить отличной базой для исследований и практических разработок в области ускорения вычислений для глубокого обучения.

Github


#ai #deepseek #opensource #DeepEP #OpenSourceWeek:

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1597

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Machine learning Interview from kr


Telegram Machine learning Interview
FROM USA